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Abstract 

Microbial communities resistant to common oxidants can cause concerns for water treatment 

plants (WTPs).  If a bacterium is not fully oxidized during disinfection, these species can impede 

upon filtration processes or seed biofilms in the distribution system.  In an effort to minimize 

disinfection by-products (DBP’s) that result from the reaction of chlorine (Cl2) with natural 

organic matter, water treatment plants have the option to change their primary oxidant to 

chlorine dioxide (ClO2).  The following study examines the change in microbial communities 

during the sedimentation process under differing oxidation regimes, specifically chlorine (Cl2) 

and ClO2 at the local water treatment plant (Beaver Water District, Lowell, AR).  Both water and 

biofilm samples taken from the sedimentation basin were investigated using a PCR approach 

targeting 16S rRNA coupled with denaturing gradient gel electrophoresis (DGGE). It is shown 

that the biofilm community in this environment exhibits higher diversity indices when compared 

to planktonic communities.  Cl2 oxidation decreased the diversity index biofilms and basin 

waters that were previously under ClO2 treatment.  Pelagibacter ubique, a common bacteria was 

observed within the basin biofilm during both Cl2 and ClO2 application.  Novosphingobium 

aromaticivorans was also observed persistent in basin biofilms under both applications and has 

been linked to primary biliary cirrhosis if no defense barrier exists in the following treatment 

steps.  This study provided valuable information for WTPs when making the decision to change 

primary oxidants.   
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I. Introduction 

Microbial communities in the environment are multi-species assemblages comprised of 

bacterium that are tolerant to similar physical and chemical conditions.  The environmental 

boundaries of any community have little to do with physical dimension, but rely on geochemical 

conditions favorable to certain species [1].  These microbial communities can shift in diversity 

due to selective pressures acting upon their environment.  Environmental conditions such as 

temperature, pH, nutrients or competing biota can act as a selective pressure on a community [1].   

More specifically, examination of microbial communities is common in water treatment.  The 

primary goal when treating source water is to address the presence of pathogens present in the 

water column and remove them to a safe level.  Engineers apply common oxidants such as free 

chlorine or chlorine dioxide within water treatment processes for removal of pathogens through 

oxidation [2].  The following study was conducted to explore how selective pressures such as 

differing pre-oxidants impact microbial communities in a water treatment plant.  This study is 

currently under review for publication in the peer-reviewed “Journal of Applied and 

Environmental Microbiology.”  The article in review contains three authors, and therefore cannot 

be altered for reformatting.  
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ABSTRACT  

The use of chlorine dioxide (ClO2) instead of free chlorine (Cl2) as a pre-oxidant is an effective 

option for reducing disinfection by-products (DBPs) in water treatment plants (WTPs).  

However, due to the dosage limitation of ClO2 and its tendency to auto-decompose, 

microbiological overgrowth can happen within the sedimentation basin, potentially impacting 

subsequent filtration and disinfection processes.  The impacts brought by this change in pre-

oxidant on plant operations and subsequent treatment processes are not fully understood. To 

assess the bacterial community response when switching pre-oxidants, water samples drawn and 

biofilm coupons inserted in the sedimentation basin were collected during the change between 

ClO2 and Cl2 in a local WTP.  Biofilm density and bacteria viability changed in response to the 

pre-oxidant change.   A PCR approach targeting 16S rRNA coupled with denaturing gradient gel 

electrophoresis (DGGE) confirmed shifts in microbial diversity in both basin waters and 

biofilms.  The diversity indices for biofilms were higher than basin water in all tests.  The switch 

to Cl2 oxidation decreased the diversity index for both biofilms and basin waters.  Band 

sequences revealed the presence of a common bacteria, Pelagibacter ubique, within the biofilm 

during both Cl2 and ClO2 application.  Furthermore, Novosphingobium aromaticivorans, a pre-

cursor to primary biliary cirrhosis (PBC), was also observed persistent in biofilms during the 

oxidation change, which provides evidence that biofilm can harbor pathogens even with the 

presence of disinfectants.  This study provided important insights of microbial growth and 

diversity induced by pre-oxidant changes, which could help WTPs to make informed decisions 

regarding disinfection.  
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INTRODUCTION 

Water treatment plants (WTPs) must adhere to increasing regulations aimed at providing safe 

drinking water.  The steps for removal of contaminants such as pathogens and solids in 

conventional water treatment typically include: primary oxidation, coagulation and flocculation 

followed by physical settling of particles, depth filtration, and secondary oxidation to provide 

residual disinfectant within the distribution system.  Common oxidants/disinfectants include 

chlorine (Cl2), potassium permanganate, ozone, UV, chloramines and chlorine dioxide (ClO2).    

The use of a strong oxidant such as Cl2 on natural organic matter can result in regulated 

disinfection by-products (DBPs).  To curb DBP formation, surface water treatment plants using 

Cl2 opt to either change their secondary disinfectant to chloramines, or change the primary 

oxidant to ClO2 which can obtain greater bacterial reductions than Cl2 on a mass-dose basis (1).  

The use of ClO2 as a pre-oxidant provides several mechanisms that lead to the inactivation of 

microorganisms, as well as controlling taste and odor problems.  This oxidant inactivates 

bacteria by readily reacting with amino acids and disrupting protein synthesis (2).  In detail, ClO2 

breaks down hydrophobic aromatic organics (i.e. amino acids or all five nucleotides for DNA 

synthesis) into smaller molecular weight hydrophilic compounds (i.e. sugars) (3).   

The dose of ClO2 in WTPs needs to be closely monitored to control chlorite formation, a 

regulated DBP resulting from the auto-decomposition of the disinfectant (2).  Due to the 

limitation on dosing and tendency for auto-decomposition, the performance of chlorine dioxide 

as a primary disinfectant and its subsequent impact on water treatment processes is not fully 

understood. First, the limited allowable dose and auto-decomposition of ClO2 may not provide 

efficient residual disinfection to control microorganism growth, in particular pathogens, within 

the sedimentation basin prior to secondary disinfection (4).  This in turn would negatively impact 
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subsequent filtration and disinfection processes by the survival of microorganisms (5). Second, 

biofilms can form in the sedimentation basin and on filtration media prior to the application of 

secondary disinfectant (5,6). Bacteria within a mature biofilm matrix are protected from 

fluctuating environments by extracellular polymeric substances (EPS) and can act as a source of 

microbial contamination within the plant (6).  More importantly, infectious agents such as 

Escherichia coli from within the plant would potentially seed the distribution system (7).  Third, 

the biofilm EPS composition can also contribute to higher DBP formation (6).  A previous study 

has shown that separate strains of bacteria produce EPS with differing primary biomolecules, 

resulting in different DBP formation (6). As a result, it is helpful to understand how the change of 

pre-oxidants impacts the microbiological activity within the WTPs in addition to DBP control. 

Characterization of microbial communities’ structure at different locations within WTPs 

provides valuable information that can be used to improve the efficiency of the WTP (8).  A 

previous study identified communities present from source water to the distribution system (8).  

It was concluded that a specific bacterial community from within the filtration process was 

seeding the distribution system, as opposed to the source water (8).   Previous studies examining 

bacterial communities in water treatment were mostly conducted when: (1) pilot plants were 

used; (2) WTPs applied consistent treatment processes; or (3) the distribution system was solely 

focused on.  Norton and LeChevallier constructed a pilot scale system to examine differences in 

distribution system biofilms by comparing conventional and biological treatment using fatty acid 

analysis and heterotrophic plate counts (HPC) (5).  In contrast, Pinto et al. applied 454 

pyrosequencing to examine these communities in a WTP (8).  Hoefel et al. compared HPC with a 

PCR-DGGE approach on bacteria through a typical water treatment process and distribution 
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system to identify active bacteria not shown using HPC alone (9).  The effectiveness and impact 

of a changing operation regime on microbial community remains unknown in the WTPs. 

  The goal of this study is to achieve a clear understanding of the effect of a changing 

disinfection regime on the microbial community before and after the change at a WTP.  Biofilm 

formation within the sedimentation basins is also studied, which has rarely been done before. 

The study site is a local WTP (Beaver Water District, Lowell, AR) which employs conventional 

water treatment processes and has the ability to change pre-oxidants between Cl2 and ClO2.  

From an operational perspective, motivation for changing oxidation regimes includes potential 

overgrowth issues within the distribution system, or a bloom of microorganisms within the plant.  

The study captured the plant’s pre-oxidant change (ClO2 to Cl2 then back to ClO2) in the summer 

of 2013 to identify the shifts in microbial diversity in water and sedimentation biofilms using 

DGGE analysis.   

MATERIALS AND METHODS 

Study site and sampling.  The water treatment plant (WTP) located in Lowell, Arkansas treats 

surface water from the Beaver Lake Reservoir.  This reservoir serves as the drinking water 

source for 420,000 people in the northwest Arkansas region.  The watershed area is 3087.3 km2 

and the lake surface area is approximately 114 km2 with an average depth of 18.3 m throughout.   

Sampling occurred from May 2013 through September 2013.  Plastic trays with 48 removable 

rectangular coupons (3.2 cm by 2.4 cm) of P120 fine grit waterproof sandpaper (3M, Singapore) 

were suspended in the sedimentation basin to allow biofilm growth for subsequent analysis.  

During sampling, 2 L of water were taken from the sedimentation basin junction boxes and an 

additional 2 L from intake headwaters. Triplicate biofilm coupons were harvested from 2 
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locations within the basin, totaling six coupon replicates per sample event.  Water samples were 

stored in 1 L brown HDPE bottles and transported on ice from the site to laboratory. All water 

samples were kept at 4ºC for short term storage before filtration. 1 L samples were filtered 

through 0.45 µm cellulose nitrate membrane filters (GE Healthcare Life Sciences, 

Buckinghamshire, UK), desiccated, and stored frozen.  The remaining 1 L of water samples were 

used for water quality parameter measurements as described next.  Biofilm disks were removed 

with sterile tweezers and transported in sterile petri dishes on ice.    Biofilm and water filters 

were stored at -20ºC for molecular analysis. 

Water quality parameters.  All glassware used was washed in phosphorous free laboratory 

detergent, rinsed three times with tap water, and three times with distilled deionized (DDI) water 

(Elga Process Water System (18.2 MΩ.cm-1) Purelab flex, Veolia, Ireland).  Glassware not used 

for total solids was air dried.  Glassware for total solids was oven baked at 100ºC for at least 1 

hour.  For sterilization and molecular analysis, all washed glassware was autoclaved (Model 

522LS Gravity Steam Sterilizer, Getinge, Rochester, NY).  To measure biofilm total solids, a 

biofilm plate was inserted into a sterile 15 mL centrifuge tube with 10 mL of DDI water and 

vortexed for 5 minutes to ensure complete solids detachment.  This mixture was then transferred 

to an oven baked, pre-weighed beaker (PMP beakers, Kartell, Italy).  The centrifuge tube was 

rinsed into the beaker three times with DDI water to ensure complete solids transfer.  Total solids 

for biofilm and water samples were measured according to Standard Method 2540 B. (10) in 

triplicate.  pH was measured with a pH meter (Thermo-Scientific, Fort Collins, CO).    Phosphate 

and nitrate tests were performed in triplicate with Hach powder pillow kits (PhosVer 3 Phosphate 

Reagent and NitraVer5 Nitrate Reagent, Hach, Loveland, CO).  Turbidity of both intake waters 

and sedimentation basin water were measured using a turbidimeter (HF Instruments DRT-100 
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turbidimeter, Fort Myers, FL).  TOC was measured with a total organic compound analyzer 

(Sievers 900 Total Organic Carbon Analyzer, GE Analytical, Boulder, CO). 

Bacteria and biofilm analyses.  Direct total microbial counts of water samples were enumerated 

following Standard Method 9216 B. (10)with the use of nucleic acid stain (DAPI nucleic acid 

stain, Life Technologies, Grand Island, NY) on an upright fluorescence microscope (Nikon 

Eclipse Ni-E upright microscope, Nikon Instruments Inc., Melville, NY).  10 mL were stained 

and filtered through a Whatman 0.2 µm nuclepore filter (GE Healthcare Life Sciences, 

Buckinghamshire, UK).  Ten randomly selected fields were counted and averaged.  Calculation 

of average number of cells per filter used the following equation: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑒𝑙𝑙𝑠
𝑚𝐿⁄ =  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 # 𝐶𝑒𝑙𝑙𝑠

𝑃𝑖𝑐𝑡𝑢𝑟𝑒
∗

𝑃𝑖𝑐𝑡𝑢𝑟𝑒𝑠

𝐹𝑖𝑙𝑡𝑒𝑟
∗ 

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

100 𝑚𝐿
    (1) 

Confocal laser scanning microscopy (CLSM) with live/dead nucleic acid stain (LIVE/DEAD 

bacLightTM Bacterial viability kit, Life Technologies, Grand Island, NY) was utilized to measure 

biofilm thickness as well as observe bacterial viability during the change in pre-oxidation. 

Biofilm thicknesses were averaged from ten measurements, performed in triplicate.  Images were 

obtained with a Nikon 90i upright CLSM using the 100X objective lens (Nikon, Inc., Meville, 

NY).   

DNA extraction.  DNA was extracted for subsequent analyses with a soil DNA extraction kit 

(Power Soil DNA Isolation Kit, Mo-Bio, Carlsbad, CA).  The protocol recommended by the 

manufacturer was followed with additional steps to enhance the extraction efficiency. The cells 

were lysed in a 60ºC water bath for two hours before the bead beating step.  To optimize PCR 

yields, DNA clean-up (Power Clean DNA Clean-up Kit, Mo-Bio, Carlsbad, CA) was performed 

following the extraction. 



www.manaraa.com

   

9 
 

16S rRNA PCR.  All plasticware was ordered nuclease free and autoclaved before use.  The 

PCR workstation was sterilized with bleach and UV radiated for 15 minutes prior.  PCR 

reactions were completed using 16S ribosomal DNA universal bacterial primer set 518R, 5’-

ATTACCGCGGCTGCTGG-3’ and 338F-GC, 5’-ACTCCTACGGGAGGCAGCAG   

GGGCGGGGCGGGGGCACGGGGGGCCTACGGGAGGCAGCAG-3' (11, 12) .  Each 50 µL 

reaction mixture contained 2X Hotstart Taq master mix (2X Hotstart Taq PCR Ready Master 

Mix, Amresco, Solon, OH), 200 nM forward primer, 200 nM reverse primer, up to 10 ng DNA 

template, and nuclease free water as needed.  The mixture was UV radiated once more for 15 

minutes prior to the addition of DNA template.  Thermal cycling (T100TM Thermal Cycler, Bio-

Rad Laboratories, Hercules, CA) consisted of initial denaturing at 95ºC for 15 minutes.  Then, 35 

cycles of the following: denaturing at 94ºC for 30 s, annealing at 56ºC for 30 s, and extension at 

72ºC for 45 seconds.  A final extension step at 72ºC for 10 minutes was performed.  The samples 

then were held at 4ºC.  Each PCR reaction had one negative control which included nuclease free 

water in lieu of DNA template.  Amplified PCR product was verified by 1.5% (w/v) agarose gel 

electrophoresis. 

DGGE.   Denaturing gradient gel electrophoresis (DGGE) was performed (Bio-Rad DCodeTM 

Universal Mutation Detection System, Bio-Rad, Hercules, CA) as previously described (12).  An 

8% (w/v) acrylamide/bisacrylamide (37.5:1; 40% w/v) was cast with a denaturing gradient from 

0 – 100% (where 100% is 7 M Urea and 40% (v/v) deionized formamide).  Subsequent analysis 

permitted the authors to narrow the gradient to 45% - 70% denaturant.  Duplicate PCR products 

were combined with a PCR clean up kit to increase concentration as well as eliminate bias 

(UltraClean PCR Clean-up Kit, Mo-Bio, Carlsbad, CA) and quantified in µg/µL using a 

microplate reader (Synergy H1 Multi-Mode Microplate Reader, Biotek Instruments, Inc., 
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Winooski, VT).  Approximately 600 ng of PCR product was loaded into cleaned wells of the 

polyacrylamide gel with 2X loading buffer (0.25 mL of 2% Bromophenol Blue, 0.25 mL of 2% 

Xylene Cyanol, 7.0 mL of 100% Glycerol, and 2.5 mL DDI water).  The instrument was heated 

to 56ºC and pre-run at 30V for 20 minutes.  Electrophoresis was optimized and run at 74V for 13 

hours (13).  The polyacrylamide gel was then stained (SYBR Safe DNA Gel Stain, Life 

Technologies, Grand Island, NY) for 10 minutes, followed by 5 minutes of rinsing with DDI.  

Images were obtained in a UV light imager (Bio-Rad, Hercules, CA). 

Sequencing of Bands.  Bands of interest from DGGE profiles were selected and retrieved using 

the stabbing method, and re-amplified in the same fashion as the original DNA template with 

identical primer sets without the GC clamp (14).  The final PCR product was prepared as 

required for sequencing at the DNA Resource Center facility (University of Arkansas).  

Sequences were uploaded and analyzed with BLAST (National Center for Biotechnology 

Information).   

DGGE Analysis.  Jaccard and Pearson cluster analysis was performed using GELCOMPARII 

(Applied Maths, Austin, TX) as previously described (14).  Each gel was normalized using 

GELCOMPARII to an external reference EZ Load Molecular Ruler (Bio-Rad, Hercules, CA) as 

well as by assigning internal reference points for accurate gel to gel comparison of densitometric 

profiles.   

Statistical Analysis.  Principal components were calculated using SAS/IML Studio (Cary, NC, 

USA).  Similarity matrices calculated in GELCOMPARII were subsequently uploaded to JMP 

statistical software (Cary, NC, USA).  Statistical significance calculations (paired student’s t-
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test) applied to triplicate environmental datasets along with standard deviations were calculated 

using Microsoft Excel (Microsoft, Redmond, WA). 

RESULTS 

Change of disinfection regime within the plant.  The WTP applied ClO2 as the pre-oxidant 

during the sampling events from 5/28-ClO2 to 7/9-ClO2.  After the sampling on 7/9-ClO2 the 

WTP changed its primary oxidant to Cl2.  The next sampling event after this change was 7/16-

Cl2.  The plant had changed back to applying ClO2 by the following sampling event, 7/23-ClO2 

and continued with this oxidant for the remainder of the study.  Each sampling event includes the 

primary oxidant being applied at that time in its abbreviation for clarity throughout the authors’ 

analysis. 

Environmental parameter changes.  Observed environmental parameters were analyzed with 

student t-tests to monitor significant changes (Table S1).  There was no significant difference in 

total solids between the non-chlorinated water and the sedimentation basin water on all sample 

events (p>0.05).  pH values significantly fluctuated during both oxidation regimes, which can be 

attributed to the pH variations of the intake water (p<0.05).  Total bacterial counts of the raw 

water reflected typical values, ranging from 106 – 109 cells/100mL.  As expected, total bacterial 

counts of the basin water were consistently several log values lower than raw water.  The basin 

counts mimicked changes in raw water, regardless of oxidation regime.  Phosphate 

concentrations were observed at or below 0.4 mg/L with no significant spikes (p> 0.05).  Nitrate 

concentrations remained unchanged until a significant increase on the last sampling event to 3.31 

mg/L from 0.02 mg/L.  Temperatures during this time ranged from 24.4 °C to 35 °C.  A 
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complete table of the environmental conditions observed over the study period is available 

(Table S1). 

Biofilm quantification through confocal imaging.  CLSM coupled with live/dead staining was 

used to monitor the biofilm formation and change in thickness (Fig. 1).  Green color indicates the 

bacteria with intact membranes, while red color represents the ones with damaged membranes. 

For each replicate three z-series stacked images were taken at step sizes no larger than 25 µm.  

Images captured in this fashion are layered from bottom to top providing a 3D image of that 

section of biofilm.  Although it is not apparent through TSb or thickness measurements, biofilm 

viability observed with CLSM exhibited significant changes as the pre-oxidant shifted to Cl2 

(p<0.05).  Intact membrane averages decreased from 56% to 42%.  After switching back to ClO2, 

the intact membranes observed increased to 48%.  Biofilm thickness was calculated from the 3D 

images (Table S1).  Biofilm data reported begins upon the sixth sampling event to ensure a 

mature colony has established. Biofilm was the thickest during the final sampling event (73.65 

µm), and averaged 52.59 ±14 µm from the sixth sampling event till the end of the experiment 

(Fig. 2).  However, biofilm total solids (TSb) measurements did not trend with observed 

thickness measurements. TSb were 0.46 mg/cm2 on 7/2-ClO2, reflecting little biomass had 

accumulated on the biofilm (Fig. 2).  The biofilm became denser over time.  This is shown as 

TSb peaked at 5.10 mg/cm2 with a thickness of 73.7 µm on the last sampling day, 9/30-ClO2.  

The sampling event before the WTP changed pre-oxidant shows a decrease in thickness from 67 

µm to 35 µm.  As the primary oxidant changed from Cl2 to ClO2 the biofilm thickness increased 

from 35 to 67 µm on 7/16-Cl2.   After the switch back to ClO2 on 7/23-ClO2, the biofilm 

continued to become densely populated.   
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Community profiling during the primary oxidant change.  To study the impact of pre-oxidant 

change on the diversity of bacteria community in both water and biofilms, a PCR-DGGE 

approach was utilized.  Heterogeneity measurements with DGGE included total band counts and 

the use of the Shannon Index, which measures diversity, taking into account both evenness and 

abundance of each banded lane (Table 1).  The Shannon Index (H’) was calculated after 

correction for exposure background noise and normalization of all acrylamide gels to the 

reference ladder.  A higher diversity index reflects a more diverse community.  The intake water 

diversity was highly variable, showing a range from 0.7105 to 1.1643 with no discernable 

pattern.  The biofilm resulted in higher diversity indices than the basin suspended bacteria in all 

cases until the final sampling event, indicating biofilm harbors and protects a more diverse 

community of bacteria than the basin water.  During Cl2 oxidation the biofilm diversity index 

decreased from 0.8354 to 0.7858 whereas suspended bacteria decreased from 0.7666 to 0.726.  It 

is notable that the suspended bacteria diversity continued to decrease for an additional week 

under the use of ClO2, whereas the biofilm diversity index increased to 0.9854, suggesting 

bacteria in biofilms recover more quickly than in water column.  

Each band considered present represents a single group of similar microorganisms, which 

are referred to as operational taxonomic units (OTUs).  The number of OTUs was determined 

using the auto search function within GELCOMPARII excluding peaks less than 5% intensity 

(Table 1).  Each lane was re-evaluated visually using the image and intensity profile to confirm 

band presence/absence.  The non-chlorinated intake water showed more diversity and more 

OTUs than the basin water on 7/2-ClO2 and 7/16-Cl2.  The use of ClO2 on 7/2-ClO2 lowered 

OTUs observed in water to 8 and in the biofilm to 14.  The ClO2 treatment was less effective on 

the biofilm than on planktonic cells on those sampling events.  When applying Cl2, the biofilm 
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exhibited 11 OTUs whereas the basin water only resulted in 8 OTUs exhibiting the biofilm’s 

ability to resist changes in the water column.  On 9/30-ClO2, the sedimentation basin showed 19 

OTUs, whereas the intake waters had 14 observed OTUs.  This increase from source water to 

basin water may be attributed to the inefficiency of ClO2 at that time as well as the existence of 

species in the basin that are no longer prominent within the intake water.   

DGGE banding patterns and OTU sequencing.  A composite data set was compiled within the 

GELCOMPARII software in order to complete an overall band matching.  The band matching 

function creates band classes on the normalized set to represent the same point in all lanes.  Each 

class clearly shows the presence/absence of a band by use of markers in the same position within 

multiple lanes.  Bands of interest sequenced from DGGE profiles were assessed to identify the 

presence of pathogens (Table 2).  Gel lanes that included sequenced bands of interest were 

compared following band matching (Fig. 3).   The DGGE gel profiles show that OTU 1, 

Novosphingobium aromaticivorans, was consistently observed in the biofilm during the 

oxidation change, but not observed in the basin water until 9/30-ClO2.  OTU 2 was present in the 

water column and biofilm consistently, showing the transfer from basin water to biofilm 

formation.  OTU 3 was present in the biofilm until 7/16-Cl2, but was not present following 7/16-

Cl2 indicating that although Gloeobacter violaceus was able to persist in ClO2 conditions, 

changing to Cl2 oxidation inactivated the population to a point where it was unable to recover.  

Sanguibacter keddieii (OTU 4) was present in the intake and basin waters for most sampling 

events, however was only present in the biofilm on 7/30-ClO2 and 9-30-ClO2.  OTU 5 was 

always present in the intake water.  Furthermore, OTU 5 was present in the biofilm for the 

entirety of July during the oxidation change to and from Cl2.  Interestingly, Flavobacterium 

columnare (OTU 8) was only present in the intake water on 5/28-ClO2 and 7/09-ClO2 but was not 
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present after either oxidation regime on any date, with the exception of 9/30-ClO2 in the basin 

water.  This indicates Flavobacterium columnare has a low tolerance for oxidation of either type 

and is not as prevalent as the proteobacteria phyla in the reservoir during summer months.  Also 

less prevalent, OTU 9 was only present on three sample events which include intake waters on 

7/16-Cl2 and 9/04-ClO2, as well as biofilm on 7/02-ClO2.  Overall, the biofilm species sequenced 

were gram-negative.  Cyanobacteria were observed in both biofilm and the water column.   

 Banding patterns were analyzed using Pearson correlation which calculates a similarity 

matrix relating each sampling event to all others.  A dendrogram was built and 5 clusters were 

observed (Fig. 3).  The majority of biofilm fingerprints grouped into clusters 4 and 5; the 

exceptions being biofilm on 8/1-ClO2 8/15-ClO2, and 7/16-Cl2.   Cluster 1 grouped fingerprints 

of intake samples 5/28-ClO2 and 7/9-ClO2 with the basin water fingerprint on 7/16-Cl2.  Cluster 2 

consists of two main nodes showing high similarity between intake fingerprints in July to basin 

profiles from 8/15-ClO2 and 7/23-ClO2.  Cluster 3 consists of intake profiles 9/4-ClO2 and 9/30-

ClO2 sharing a node with the biofilm profile on 7/16-Cl2.  These clusters exhibit a clear 

difference in community profiles when comparing water column to biofilm communities.  

However, there is no distinguishable difference between the intake water column and the basin 

water column.  To look further into the relationships between fingerprint profiles, principal 

components were created from the densiometric profiles of all sampling events (Fig. 4).  The 

biofilm profiles, with the exception of 8/1-ClO2 fall in the upper left quadrant.  The biofilm 

fingerprint on 7/16-Cl2 does not group with the other biofilm patterns; component 2 illustrates 

the variation between 7/16-Cl2 and the other biofilm fingerprints. Component 1 accounts for 

58.4% of the variation and illustrates the difference between water column community profiles 
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and biofilm profiles.  All intake banding patterns fall on the right side of component one, 

whereas all biofilm except 8/1-ClO2 fall on the left side of component 1.   

DISCUSSION 

The motivation behind implementing ClO2 as a primary oxidant is for reduction of DBPs in the 

finished water.  The use of a strong oxidant such as Cl2 on natural source waters results in 

organic DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs) (15). The United 

States Environmental Protection Agency (EPA) regulations on DBPs specify a maximum 

contaminant level (MCL) for total THMs and five HAAs of 0.080 µg/L and 0.060 µg/L, 

respectively (2).  Chronic exposure to these DBPs can lead to neural tube defects, spontaneous 

abortions, bladder or colorectal cancer (16, 17).  It has been shown that applying ClO2 followed 

by Cl2 results in lower THMs and HAAs in the treated water relative to Cl2 alone (18, 19).  On 

the other hand, ClO2 does not form organic DBPs; however it does still form chlorite and 

chlorate.  The highest no-observed-adverse-affect-level for chlorite exposure is reported as 3 

mg/kg-day regarding neurodevelopmental delay in infants and young children (2).  By applying 

ClO2 as a pre-oxidant followed by Cl2 disinfection, THM formation reduction ranged from 13% 

to 34%, when compared to not using a pre-oxidant (20).  Furthermore, DBP formation potential 

on natural surface waters has been shown to be reduced by up to 45% using ClO2 before Cl2 (3). 

As switching oxidation regime becomes increasingly popular in WTPs, clear understanding is 

required in terms of how this change impacts the water quality and treatment plant itself.  The 

efficacy of each disinfectant has been studied (2), and the microbial community within the 

treatment plant has been studied (5, 21, 9, 22–25), but the shift in microbial community is not yet 

identified when the primary oxidant changes.  In addition, biofilm formed within the treatment 

plant could have significant impact on subsequent plant operations, as pathogens can be harbored 
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and dispersed into treated water and ultimately affect the health of distribution system and water 

quality. This study is the first to focus on biofilms formed within a sedimentation basin by 

investigating the diversity changes under differing primary oxidants at a full size treatment 

facility.  From this study we can conclude that there is a clear reaction by the microorganisms to 

treatment processes.   

Water treatment facilities must provide high quality potable water regardless of fluctuating 

conditions within the influent water body or inside the plant.  The aim of this study was to 

identify biological issues associated with the oxidation switch in respect to the water column and 

biofilm bacterial communities. To address this, biofilm coupons were inserted into the WTPs 

sedimentation basins.  The coupons provided undisturbed biofilm samples during the summer 

months as the facility changed from ClO2 to Cl2, then back to ClO2.  Results reflected that after 

application of a primary oxidant, a biofilm community still persists in the sedimentation basin 

under differing oxidation regimes.  A previous study on microbial communities in distribution 

systems showed that ClO2 is effective at decreasing planktonic bacterial cells; however no 

significant decrease in biofilm bacterial cell counts has been seen (16).  This research 

corroborates with these previous results as applied to biofilms in general.  Other studies have 

characterized microbial communities from source to distribution for specific WTPs (5, 8, 9, 22–

25).  This study builds upon previous research on microbial activity in water treatment by 

examining the dynamics of how planktonic and biofilm diversity responds to changes in primary 

treatment processes.   

Biofilm and planktonic species identified in this study have different levels of interest from a 

water treatment standpoint (Table 2).  Pelagibacter ubique (OTU 5&6) is the smallest free-living 

bacterium, however it is found prevalent in both fresh water and seawater (26).  This study 
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observed the presence of P. ubique for the month of July, during Cl2 and ClO2 application.  The 

resistance to these strong oxidants in the sedimentation basin can hinder further treatment 

processes (5).  Novosphingobium aromaticivorans (OTU 1), persistent in the biofilm during the 

oxidation change, has been linked to primary biliary cirrhosis (PBC), a liver disease resulting 

from undetected bacterial infections (27).  Removal of this pathogen prior to finished water 

processing will decrease the likelihood of its presence in distribution system biofilms. OTU 9, 

Acidothermus cellulolyticus, a thermophile responsible for decomposing cellulases, was first 

isolated from hot springs and can be found in decomposing grasses and litter (28).   

The transfer from planktonic cells to biofilm formation is the result of the microbial surface 

attachment and subsequent matrix production (29, 30).  Tools for analyzing physical and 

chemical gradients within biofilms include CLSM, low load compression testing (LLCT), X-ray 

scanning microscopy, and imaging techniques utilizing fluorescent stains or probes (31).  In this 

study, CLSM allowed for detailed examination of the biofilm milieu as its structure evolved.  

CLSM showed the formation and aggregation of the biofilm matrix, as well as the disruption 

correlating with the change in primary oxidant.  Although LLCT has been shown to be more 

accurate when measuring biofilm thickness, studies also reveal that CLSM can provide high 

quality data for thicknesses up to 70 µm (32).   

When examining community shifts caution should always be taken while comparing to previous 

studies, especially when DGGE is the application in use.  Disadvantages with DGGE have 

previously been examined and discussed in detail (13, 33, 34).  In short, PCR bias, co-migration 

or double banding can all influence densitometric profiles (34).  Regardless of these limitations, 

DGGE provides valuable information regarding community structures during environment 

changes.  Coupled with molecular analysis, DGGE can clearly indicate population dynamics 
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under selective pressures (35).  The absence of OTU 3 after 7/16-Cl2 showed the inability of 

Gloeobacter violaceus to persist within a stressed environment.  This study has shown that a 

unique microbial community persists under ClO2 pretreatment.  This community includes both 

planktonic and attached, and responds to pre-oxidants differently.  Water treatment plant 

operations that have the ability to change primary oxidation regimes could benefit from 

understanding possible effects of each primary oxidant coupled with subsequent chlorination.  A 

previous study observed a clear shift from a mixed population of gram-positive and negative, to 

predominantly gram-positive after chlorinating raw water with Cl2 (5).  Future work should 

explore the results of this study to look further into gram negative or gram positive correlations 

with previous research.  Future work can also address changes in microbial communities at other 

locations in WTPs and distribution systems as the primary oxidant changes.  This would aid 

plant engineers in curbing DBP formation as well as addressing operational problems within the 

plant.   
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TABLES 

Table 1 Each DGGE gel lane, normalized through GELCOMPARII showing total OTU counts per lane over time.  The Shannon 

Index, taking into account evenness and diversity, of each banded lane was calculated as data was available.  A complete profile 

is given in Figure 5.  OTU quantities and diversity index are given as a function of time with indication of pre-oxidation regime 

being applied at that time. 

  

 

Sampling Date 

    

Sample 

Location   7/2-ClO2 7/9-ClO2 7/16-Cl2 7/23-ClO2 8/1-ClO2 8/15-ClO2 9/4-ClO2 9/30-ClO2 

 

  

        Intake Water Qty. of OTU's 16 9 14 9 * * 19 14 

  Diversity Index 1.1138 0.7553 1.0336 0.7105 * * 1.1643 1.0561 

Biofilm Qty. of OTU's 14 9 11 13 17 17 9 13 

  Diversity Index 0.8085 0.8354 0.7858 0.9854 1.0478 1.1251 0.7534 0.9463 

Basin Water Qty. of OTU's 8 * 8 9 * 18 * 19 

  Diversity Index 0.7666 * 0.726 0.6522 * 1.1049 * 1.1973 

          * indicates data unavailable.  DNA extractions of these samples were 

unsuccessful. 

     OTU: operational taxonomic units 

        ClO2: chlorine dioxide pre-oxidation 

        Cl2: free chlorine pre-oxidation 

         

  

 2
4
 



www.manaraa.com

   

 
 

Table 2 Percent similarity 16S rRNA sequences identified from DGGE profiles.  OTU designations are also indicated on Figure 5.  

Sequence information was entered into BLAST (blast.ncbi.nlm.nih.gov). 

OTU  Microorganism 

Phylogenetic 

Affiliation 

Gram 

Reaction 

Accession 

Number Similarity Coverage 

Significance in Water 

Treatment 

1 Novosphingobium aromaticivorans proteobacteria negative NC 007794.1 98% 115/117 

Pathogenic; causes primary 

biliary cirrhosis (PBC) 

2 Synechococcus sp. cyanobacteria negative NC_009482.1 93% 105/113 

possible source for 

cyanotoxins 

3 Gloeobacter violaceus  cyanobacteria negative NC 005125.1 91% 96/106 

possible source for 

cyanotoxins 

4 Sanguibacter keddieii actinobacteria positive NC 013521.1 88% 111/126 

Facultatively anaerobic; 

versatile 

5 Pelagibacter ubique proteobacteria negative NC 007205.1 98% 109/111 

Highly dominant worldwide 

in water bodies 

6 Pelagibacter ubique proteobacteria negative NC_007205.1 98% 112/114 

Highly dominant worldwide 

in water bodies 

7 Novosphingobium sp. proteobacteria negative NC_015580.1 98% 87/89 * 

8 Flavobacterium columnare flavobacterium negative NC_016510.2 95% 112/118 

Showed a low tolerance for 

both oxidants 

9 Acidothermus cellulolyticus actinobacteria negative NC_008578.1 88% 97/110 

found in warm cow feces, 

decomposing hay; 

thermophilic 

        * indicates no conclusion was made 

      
OTU: operational taxonomic unit 

References: (26–28, 36–38) 

        

2
5
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 2
6

 



www.manaraa.com

   

27 
 

Figure 1 Confocal laser scanning microscopy imaging of the biofilm formation in the 

sedimentation basin.  The biofilm incorporated flocculated particles as they settled in the 

sedimentation basin resulting in a non-homogenous, complex matrix of ferrous salts and 

bacterial aggregates. a) Biofilm formation under chlorine dioxide pre-oxidation at a) 2 weeks b) 

4 weeks c) 6 weeks d) 4 days after switching pre-oxidation to chlorine e) 1 week after the 

change, under chlorine dioxide f) 2 weeks after the change.  
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Figure 2 On the primary y-axis, total biofilm solids accumulation (mg/cm2) on the biofilm plates 

is shown as an average of two replicates from within the sedimentation basin dependent on time 

of sampling.  The change of pre-oxidant occurred as indicated by the hatched dataset.  The 

secondary y-axis shows average biofilm thickness (µm) including standard error of the mean 

(n=30) as data points connecting the dashed line, also dependent upon sampling time.  
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Figure 3 Un-weighted pair group method with arithmetic mean (UPGMA) correlation of 

sampling dates with sequenced operational taxonomic units. The lanes pictured above are 

depicted as raw images before normalization. All lanes were normalized to an external reference 

ladder before band matching was performed; present bands were denoted as 1 and absent bands 

denoted as 0.  The band classes (defined by position in gel lane) derived from intensity profiles 

were exported into Microsoft Excel to examine presence/absence of sequenced bands in varying 

classes. 
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Figure 4 Pearson cluster analysis comparison of non-chlorinated intake waters, basin water and 

biofilm.  Cluster 4 and 5 distance the biofilm densitometric curves from both chlorinated and 

non-chlorinated samples, with the exceptions of biofilm on 8/1 and 7/16. 
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Figure 5 Principal components for all samples created from denaturing gradient gel electrophoresis 

densitometric curves using un-weighted pair group method with arithmetic mean (UPGMA) clustering.  

The similarity matrix was uploaded into JMP Pro to calculate principal components.   

 



www.manaraa.com

   

 

Table S1.  Environmental parameters measured in the sedimentation basin from 6/4 to 9/30. 

Samping 

Date 

Week 

Number 

Water 

Total 

Solids 

 

(mg/L) 

Bacterial 

Count 

(< 2µm) 

(cells/100mL) 

Organism 

Count  

(> 50 µm) 

(cells/100mL) pH 

PO4 

(mg/L) 

NO3  

(mg/L) 

Turbidity  

(NTU) 

Organic 

Carbon 

(mg/L 

as C) 

High 

(°C) 

Precipitation. 

(inch)   

6/4/2013 3 61 1.81E+02 1.00E+00 6.50 0.04 0.72 0.9 2.18 28.3 0 

 6/11/2013 4 180 7.91E+06 1.00E+00 6.37 0.07 0.70 0.6 1.93 32.2 0 

 6/18/2013 5 79 9.30E+06 3.86E+03 6.52 0.06 0.90 0.1 2.11 31.7 0.18 

 6/25/2013 6 96 2.71E+07 3.86E+03 7.31 0.06 1.09 1.21 2.08 31.7 0 

 
7/2/2013 7 71 2.47E+07 1.93E+04 6.79 0.04 0.78 0.2 2.08 26.1 0 

 
7/9/2013 8 83 2.97E+07 5.10E+05 7.56 0.06 1.02 0.2 2.37 33.3 0 

 7/16/2013 9 31 2.28E+07 3.48E+04 6.56 0.16 0.85 0.3 2.82 31.1 0 

 
7/23/2013 10 77 5.42E+07 3.86E+03 6.72 0.10 1.12 1 1.96 35.0 1.4 

 
8/1/2013 11 153 1.25E+07 6.96E+04 7.38 0.39 0.78 0.4 1.8 30.6 0 

 8/15/2013 12 165 7.70E+06 3.48E+04 7.24 0.10 0.75 0.5 1.91 25.0 0 

 8/26/2013 13 53 4.52E+09 1.04E+07 6.76 0.03 0.41 1.0 2.11 32.2 0 

 9/6/2013 14 69 4.13E+06 2.71E+04 8.15 0.13 0.02 0.2 2.01 30.0 0 

 9/30/2013 15 252 4.97E+06 1.16E+04 7.01 0.03 3.31 0.2 1.75 24.4 0 

  

 

 3
2

 



www.manaraa.com

   

33 
 

 

Conclusion 

This study shows the ability of biofilm to harbor pathogens under extreme selective pressures 

such as strong oxidants including Cl2 and ClO2.  There are advantages and disadvantages to 

using either Cl2 or ClO2 as a primary oxidant.  Although ClO2 is a stronger oxidant on a 

mass:dose basis, it is not as effective as Cl2 on disinfection within biofilm communities.  

However, since the use of Cl2 results in organic DBP’s, ClO2 is a safer alternative if the resulting 

chlorite is properly quenched.  In the future, development of strategies to overcome biofilm 

formation in the sedimentation basins would aid primary oxidation efficiency and protect further 

treatment processes, and microbial quality within the treatment plant should be considered when 

switching pre-oxidants for DBP reduction purposes. 
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